Aircraft Health Monitoring System Market Report by Component (Hardware, Software, Services), Subsystem (Aero-Propulsion, Avionics, Ancillary Systems, Aircraft Structures, and Others), End-User (Commercial, Military), Installation (Onboard, On Ground), Fit (Linefit, Retrofit), Operation Time (Real-Time, Non-Real-Time), Operation Type (Detection, Diagnostics, Condition-Based Maintenance and Adaptive Control, and Others), and Region 2024-2032

Aircraft Health Monitoring System Market Report by Component (Hardware, Software, Services), Subsystem (Aero-Propulsion, Avionics, Ancillary Systems, Aircraft Structures, and Others), End-User (Commercial, Military), Installation (Onboard, On Ground), Fit (Linefit, Retrofit), Operation Time (Real-Time, Non-Real-Time), Operation Type (Detection, Diagnostics, Condition-Based Maintenance and Adaptive Control, and Others), and Region 2024-2032

Report Format: PDF+Excel | Report ID: SR112024A2221
Buy Now

Market Overview:

The global aircraft health monitoring system market size reached US$ 4.5 Billion in 2023. Looking forward, IMARC Group expects the market to reach US$ 7.7 Billion by 2032, exhibiting a growth rate (CAGR) of 6% during 2024-2032. The increasing focus on enhancing aviation safety, recent advancements in sensor technology and data analytics, rapid escalation in air traffic and fleet sizes, and proliferation of autonomous and unmanned aerial vehicles (UAVs)are some of the major factors propelling the market.

Report Attribute 
Key Statistics
Base Year
2023
Forecast Years
2024-2032
Historical Years
2018-2023
Market Size in 2023
US$ 4.5 Billion
Market Forecast in 2032
US$ 7.7 Billion
Market Growth Rate 2024-2032 6%


The aircraft health monitoring system (AHMS) refers to a critical part of modern aviation designed to enhance safety and operational efficiency. It is an integrated system that uses sensors, data acquisition modules, and data processing units to continuously monitor the structural integrity and overall performance of an aircraft. AHMS is widely used for real-time fault detection, fuel consumption optimization, predictive maintenance, corrosion detection, load monitoring, engine health monitoring, avionics system checks, and thermal stress assessment. It aids in reducing maintenance costs, increasing aircraft availability, enhancing safety, enabling efficient resource allocation, and minimizing unscheduled maintenance.

Global Aircraft Health Monitoring System Market

The proliferation of autonomous and unmanned aerial vehicles (UAVs) is facilitating system adoption for monitoring and operational safety, especially when human intervention is limited. Additionally, the increasing utilization of advanced materials like composites in aircraft construction, which requires sophisticated monitoring to assess structural integrity, is propelling the market growth. Besides this, the growing prevalence of the Internet of Things (IoT), which enables seamless data collection and transmission, making it easier to integrate AHMS with other systems for a comprehensive overview of aircraft health, is contributing to the market growth. Furthermore, the escalating competition among airlines, which is encouraging the adoption of systems that provide a competitive edge, such as AHMS, is catalyzing the market growth. Apart from this, the rapid globalization of the airline industry, leading to the international standardization of safety norms and operational procedures, is acting as another growth-inducing factor.

Aircraft Health Monitoring System Market Trends/Drivers:

The increasing focus on enhancing aviation safety

The escalating emphasis on enhancing aviation safety is one of the most prominent factors driving the aircraft health monitoring system (AHMS) market. Safety has become a paramount concern for aviation authorities, aircraft manufacturers, and airline operators owing to the global rise in air travel. Furthermore, regulatory bodies are setting increasingly stringent safety standards and guidelines that necessitate the adoption of advanced health monitoring systems. These guidelines mandate regular and rigorous checks to assess the airworthiness of an aircraft, further accentuating the need for real-time, accurate monitoring systems like AHMS. Moreover, incidents related to aircraft safety can have disastrous consequences, not only in terms of human lives but also in reputational damage and financial liabilities for airlines and manufacturers. AHMS, through its various types and components, offers capabilities for real-time diagnosis and predictive maintenance, helping to avert catastrophic failures.

The recent advancements in sensor technology and data analytics

The rapid advancement in sensor technology and data analytics is a prominent factor driving the market growth. Sensors have become more precise, durable, and cost-effective, allowing for comprehensive monitoring of various aircraft systems, including engines, wings, landing gear, and even cabin environments. These advancements permit the collection of a broader range of data points, from vibration frequencies to thermal patterns, thereby enriching the analysis process. Furthermore, modern sensors are more resilient to harsh conditions like extreme temperatures and pressures, further boosting their adoption in AHMS setups. In addition to sensor technology, advancements in data analytics are playing a vital role in the market growth. The evolution of data analytics tools allows AHMS to process massive volumes of real-time data swiftly to detect irregularities, predict possible malfunctions, and recommend proactive maintenance actions.

The rapid escalation in air traffic and fleet sizes

The escalation in global air traffic and increasing fleet sizes are also crucial drivers for the AHMS market. Airlines are expanding their operations to cater to the growing demand for air travel, which, in turn, is facilitating the need for efficient fleet management solutions. Aircraft are significant capital investments, and extending their operational life is a key focus for operators. AHMS is uniquely positioned to aid in this aspect by continuously monitoring the health of various aircraft components and systems, thus helping to extend their lifecycle. Furthermore, the real-time monitoring capabilities of AHMS provide airlines with immediate insights into aircraft performance, reducing downtime due to unscheduled maintenance. Moreover, it allows airlines to increase aircraft availability and better manage tight flight schedules, which is a crucial factor given the high operating costs and low profit margins commonly associated with the aviation industry.

Aircraft Health Monitoring System Industry Segmentation:

IMARC Group provides an analysis of the key trends in each segment of the global aircraft health monitoring system market report, along with forecasts at the global, regional and country levels from 2024-2032. Our report has categorized the market based on component, subsystem, end-user, installation, fit, operation time and operation type.

Breakup by Component:

  • Hardware
  • Software
  • Services
     

Hardware dominates the market

The report has provided a detailed breakup and analysis of the market based on the component. This includes hardware, software, and services. According to the report, hardware represented the largest segment.

Hardware is dominating the market as it forms the foundational layer upon which AHMS operates, encompassing critical elements like sensors, data acquisition units, and communication modules. These components are essential for gathering and transmitting the raw data that software algorithms later analyze. Furthermore, hardware in AHMS is often specialized to withstand conditions, such as high temperatures, vibrations, and pressures commonly experienced in aviation environments. The durability of hardware naturally elevates its importance and market share in the AHMS component segment. Moreover, the periodic need for replacement and upgrading of hardware due to wear and tear or technological advancements is catalyzing the market growth.

Breakup by Subsystem:

  • Aero-Propulsion
  • Avionics
  • Ancillary Systems
  • Aircraft Structures
  • Others
     

Aero-propulsion hold the largest share in the market

A detailed breakup and analysis of the market based on subsystem has also been provided in the report. This includes aero-propulsion, avionics, ancillary systems, aircraft structures, and others. According to the report, aero-propulsion represented the largest segment.

Aero-propulsion is dominating the market as it is responsible for generating the thrust required for flight. Any malfunction within this subsystem can lead to catastrophic consequences, making continuous monitoring critical for ensuring flight safety. Furthermore, aviation authorities and operators place immense importance on real-time health checks of propulsion systems, which, in turn, is boosting the market growth. Additionally, the aero-propulsion system is one of the most complicated and expensive components of an aircraft. Regular monitoring via AHMS allows for predictive maintenance, reducing the likelihood of unscheduled, costly repairs, and elongating the life of the system.

Breakup by End-User:

  • Commercial
  • Military
     

Commercial holds the largest share in the market

A detailed breakup and analysis of the market based on end user has also been provided in the report. This includes commercial and military. According to the report, commerical accounted for the largest market share.

The commercial is dominating the market owing to the sheer volume of air traffic in the commercial sector, which substantially outnumbers that of other segments like military or cargo. Furthermore, the rapid proliferation of commercial flights due to the rise of low-cost carriers is facilitating the demand for systems that can ensure aircraft safety and operational efficiency. Additionally, commercial airlines operate in a fiercely competitive market where cost optimization is crucial for survival. AHMS significantly reduces operational and maintenance costs by enabling predictive maintenance, which aids in reducing downtime and the costs associated with emergency repairs or grounding of aircraft.

Breakup by Installation:

  • Onboard
  • On Ground
     

On ground holds the largest share in the market

A detailed breakup and analysis of the market based on installation has also been provided in the report. This includes onboard and on ground. According to the report, on ground accounted for the largest market share.

On-ground systems offer the advantage of more robust computational capabilities as they are not constrained by the space and weight limitations inherent in onboard systems. It allows for more extensive data analysis, including the use of complex algorithms that may be impractical to run on aircraft-based systems. Furthermore, a ground-based AHMS facilitates seamless integration with existing maintenance, repair, and overhaul (MRO) procedures. It enables technicians to access real-time data quickly and efficiently, making it easier to diagnose issues and plan maintenance activities more effectively. Moreover, the ground-based infrastructure can be more easily upgraded or expanded to accommodate additional data streams and analytical requirements. This flexibility makes it a cost-effective choice for many operators.

Breakup by Fit:

  • Linefit
  • Retrofit
     

Retrofit holds the largest share in the market

A detailed breakup and analysis of the market based on fit has also been provided in the report. This includes linefit and retrofit. According to the report, retrofit accounted for the largest market share.

Retrofit is dominating the market growth as a large portion of the existing global aircraft fleet consists of older models that were not originally equipped with advanced health monitoring systems. Retrofitting these aircraft with modern AHMS allows airlines to enhance safety and operational efficiency without the massive investment involved in purchasing new aircraft. Additionally, it allows airlines to comply with increasingly stringent regulations set by aviation authorities concerning safety and emissions. Moreover, retrofit solutions are often modular, allowing airlines to choose the components that are most relevant to their specific operational needs. It permits phased implementation, spreading the cost over time and allowing for future upgrades, thus making it financially feasible for operators, including low-cost carriers.

Breakup by Operation Time:

  • Real-Time
  • Non-Real-Time
     

Non-real-time holds the largest share in the market

A detailed breakup and analysis of the market based on operation time has also been provided in the report. This includes real-time and non-real-time. According to the report, non-real-time accounted for the largest market share.

Non-real-time operations have historically been the standard in aviation maintenance, resulting in a widespread infrastructure already in place. Many airlines are hesitant to immediately transition to real-time systems due to the significant investment required for both hardware and training. Furthermore, non-real-time AHMS allows for more comprehensive and detailed analysis as data can be collected over extended periods and scrutinized thoroughly. Besides this, they are generally more cost-effective to implement and maintain, as they do not require the same level of connectivity and data processing capabilities as real-time systems, leading to lower operational costs.

Breakup by Operation Type:

  • Detection
  • Diagnostics
  • Condition-Based Maintenance and Adaptive Control
  • Others
     

Detection holds the largest share in the market

A detailed breakup and analysis of the market based on operation type has also been provided in the report. This includes detection, diagnostics, condition-based maintenance and adaptive control, and others. According to the report, detection accounted for the largest market share.

Detection systems in AHMS are essential for compliance with stringent aviation regulations. Regulatory agencies often mandate real-time monitoring and fault detection as part of their airworthiness criteria. Airlines, therefore, invest in sophisticated detection systems not only to maintain compliance but also to avoid costly penalties or groundings that could result from regulatory violations. Furthermore, advanced detection systems contribute to operational efficiency by pinpointing issues in real time, reducing downtime, and maximizing aircraft utilization. It is particularly crucial for commercial airlines operating on thin margins, where extended downtime can significantly impact profitability.

Breakup by Region:

  • North America
    • United States
    • Canada
  • Asia Pacific
    • China
    • Japan
    • India
    • South Korea
    • Australia
    • Indonesia
    • Others
  • Europe
    • Germany
    • France
    • United Kingdom
    • Italy
    • Spain
    • Russia
    • Others
  • Latin America
    • Brazil
    • Mexico
    • Others
  • Middle East and Africa
     

Asia Pacific exhibits a clear dominance, accounting for the largest aircraft health monitoring system market share

The market research report has also provided a comprehensive analysis of all the major regional markets, which include North America (the United States and Canada); Asia Pacific (China, Japan, India, South Korea, Australia, Indonesia, and others); Europe (Germany, France, the United Kingdom, Italy, Spain, Russia, and others); Latin America (Brazil, Mexico, and others); and the Middle East and Africa. According to the report, Asia Pacific accounted for the largest market share.

Asia Pacific is experiencing an unprecedented surge in both domestic and international air travel, driven by increasing urbanization, economic growth, and a burgeoning middle class with disposable income. Furthermore, the region hosts some of the busiest airports in the world, necessitating high levels of efficiency and safety. The high volume of air traffic places a significant burden on existing aviation infrastructure and aircraft, increasing the need for sophisticated monitoring systems like AHMS to maintain optimal safety standards and operational efficiency. Besides this, the regional governments are investing heavily in upgrading existing platforms and acquiring new aircraft, all of which are increasingly equipped with advanced health monitoring systems. Additionally, the region is witnessing significant collaboration between governments, research institutions, and private companies for the development and adoption of AHMS technologies.

Competitive Landscape:

Top companies are developing more advanced and efficient health monitoring systems by incorporating new algorithms, sensor technologies, and predictive analytics tools. Additionally, they are engaging in strategic collaborations with airlines, aircraft manufacturers, and technology firms to facilitate the integration of AHMS into existing aircraft infrastructure. Besides this, leading firms are expanding their global footprint to tap into emerging markets by establishing facilities in countries with fast-growing aviation sectors. Moreover, they are offering tailored products to meet the specific requirements of different types of aircraft, including commercial jets, military aircraft, and drones. In addition, companies are developing AHMS solutions that not only enhance safety but also contribute to fuel efficiency and emissions reductions. Along with this, they are working closely with authorities to ensure that their products meet all the safety and operational guidelines set forth by aviation authorities.

The report has provided a comprehensive analysis of the competitive landscape in the market. Detailed profiles of all major companies have also been provided. Some of the key players in the market include:

  • Airbus SE
  • Curtiss-Wright Corporation
  • FLYHT Aerospace Solutions Ltd.
  • GE Engine Services LLC (General Electric Company)
  • Honeywell Aerospace
  • Meggitt Plc
  • Rolls-Royce Plc
  • Safran
  • SITA N.V.
  • The Boeing Company

Recent Developments:

  • In November 2021, Middle East Airlines (MEA) became the 50th customer to use Airbus’s Skywise Health Monitoring (SHM) tool.
  • In July 2022, Curtiss-Wright Corporation was awarded a contract by Airbus to provide custom actuation technology. This technology offers improved reliability over legacy systems and incorporates health monitoring functions.
  • In June 2023, GE Engine Services LLC (General Electric Company) was selected by Korea Aerospace Industries (KAI) to supply health and usage monitoring systems (HUMS).

Aircraft Health Monitoring System Market Report Scope:

Report Features Details
Base Year of the Analysis 2023
Historical Period 2018-2023
Forecast Period 2024-2032
Units US$ Billion
Scope of the Report Exploration of Historical Trends and Market Outlook, Industry Catalysts and Challenges, Segment-Wise Historical and Predictive Market Assessment:
  • Component
  • Subsystem
  • End-User
  • Installation
  • Fit
  • Operation Time
  • Operation Type
  • Region
Components Covered Hardware, Software, Services
Subsystems Covered Aero-Propulsion, Avionics, Ancillary Systems, Aircraft Structures, Others
End-Users Covered Commercial, Military
Installations Covered Onboard, On Ground
Fits Covered Linefit, Retrofit
Operation Times Covered Real-Time, Non-Real-Time
Operation Types Covered Detection, Diagnostics, Condition-Based Maintenance and Adaptive Control, Others
Regions Covered Asia Pacific, Europe, North America, Latin America, Middle East and Africa
Countries Covered United States, Canada, Germany, France, United Kingdom, Italy, Spain, Russia, China, Japan, India, South Korea, Australia, Indonesia, Brazil, Mexico
Companies Covered Airbus SE, Curtiss-Wright Corporation, FLYHT Aerospace Solutions Ltd., GE Engine Services LLC (General Electric Company), Honeywell Aerospace, Meggitt Plc, Rolls-Royce Plc, Safran, SITA N.V., The Boeing Company, etc.
Customization Scope 10% Free Customization
Report Price and Purchase Option Single User License: US$ 3899
Five User License: US$ 4899
Corporate License: US$ 5899
Post-Sale Analyst Support 10-12 Weeks
Delivery Format PDF and Excel through Email (We can also provide the editable version of the report in PPT/Word format on special request)

Key Benefits for Stakeholders:

  • IMARC’s industry report offers a comprehensive quantitative analysis of various market segments, historical and current market trends, market forecasts, and dynamics of the aircraft health monitoring system market from 2018-2032.
  • The research report provides the latest information on the market drivers, challenges, and opportunities in the global aircraft health monitoring system market.
  • The study maps the leading, as well as the fastest-growing, regional markets. It further enables stakeholders to identify the key country-level markets within each region.
  • Porter's five forces analysis assist stakeholders in assessing the impact of new entrants, competitive rivalry, supplier power, buyer power, and the threat of substitution. It helps stakeholders to analyze the level of competition within the aircraft health monitoring system industry and its attractiveness.
  • Competitive landscape allows stakeholders to understand their competitive environment and provides an insight into the current positions of key players in the market.

Key Questions Answered in This Report

The global aircraft health monitoring system market was valued at US$ 4.5 Billion in 2023.

We expect the global aircraft health monitoring system market to exhibit a CAGR of 6% during 2024-2032.

The extensive utilization of aircraft health monitoring systems for monitoring the lifecycle of aircraft components and predicting failures or malfunctions, such as over-heating of engines, high vibrations, low oil pressure, etc., is primarily driving the global aircraft health monitoring system market.

The sudden outbreak of the COVID-19 pandemic had led to the implementation of stringent lockdown regulations across several nations, resulting in the decline of various aviation activities, thereby negatively impacting the global market for aircraft health monitoring systems.

Based on the component, the global aircraft health monitoring system market can be bifurcated into hardware, software, and services. Currently, hardware exhibits a clear dominance in the market.

Based on the subsystem, the global aircraft health monitoring system market has been categorized into aero-propulsion, avionics, ancillary systems, aircraft structures, and others. Among these, aero-propulsion currently accounts for the majority of the total market share.

Based on the end user, the global aircraft health monitoring system market can be segmented into commercial and military. Currently, the commercial sector holds the largest market share.

Based on the installation, the global aircraft health monitoring system market has been divided into onboard and on ground, where on ground currently exhibits a clear dominance in the market.

Based on the fit, the global aircraft health monitoring system market can be categorized into linefit and retrofit. Currently, retrofit accounts for the majority of the global market share.

Based on the operation time, the global aircraft health monitoring system market has been segregated into real-time and non-real-time, where non-real-time currently exhibits a clear dominance in the market.

Based on the operation type, the global aircraft health monitoring system market can be bifurcated into detection, diagnostics, condition-based maintenance and adaptive control, and others. Currently, detection holds the largest market share.

On a regional level, the market has been classified into North America, Asia-Pacific, Europe, Latin America, and Middle East and Africa, where Asia-Pacific currently dominates the global market.

Some of the major players in the global aircraft health monitoring system market include Airbus SE, Curtiss-Wright Corporation, FLYHT Aerospace Solutions Ltd., GE Engine Services LLC (General Electric Company), Honeywell Aerospace, Meggitt Plc, Rolls-Royce Plc, Safran, SITA N.V., The Boeing Company, etc.

Need more help?

  • Speak to our experienced analysts for insights on the current market scenarios.
  • Include additional segments and countries to customize the report as per your requirement.
  • Gain an unparalleled competitive advantage in your domain by understanding how to utilize the report and positively impacting your operations and revenue.
  • For further assistance, please connect with our analysts.
Aircraft Health Monitoring System Market Report by Component (Hardware, Software, Services), Subsystem (Aero-Propulsion, Avionics, Ancillary Systems, Aircraft Structures, and Others), End-User (Commercial, Military), Installation (Onboard, On Ground), Fit (Linefit, Retrofit), Operation Time (Real-Time, Non-Real-Time), Operation Type (Detection, Diagnostics, Condition-Based Maintenance and Adaptive Control, and Others), and Region 2024-2032
Purchase options




Benefits of Customization

Personalize this research

Triangulate with your data

Get data as per your format and definition

Gain a deeper dive into a specific application, geography, customer, or competitor

Any level of personalization

Get in Touch With Us
UNITED STATES

Phone: +1-631-791-1145

INDIA

Phone: +91-120-433-0800

UNITED KINGDOM

Phone: +44-753-713-2163

Email: sales@imarcgroup.com

Client Testimonials

Aktive Services

IMARC made the whole process easy. Everyone I spoke with via email was polite, easy to deal with, kept their promises regarding delivery timelines and were solutions focused. From my first contact, I was grateful for the professionalism shown by the whole IMARC team. I recommend IMARC to all that need timely, affordable information and advice. My experience with IMARC was excellent and I can not fault it.

Read More
Greenfish S.A.

The IMARC team was very reactive and flexible with regard to our requests. A very good overall experience. We are happy with the work that IMARC has provided, very complete and detailed. It has contributed to our business needs and provided the market visibility that we required

Read More
Colruyt Group

We were very happy with the collaboration between IMARC and Colruyt. Not only were your prices competitive, IMARC was also pretty fast in understanding the scope and our needs for this project. Even though it was not an easy task, performing a market research during the COVID-19 pandemic, you were able to get us the necessary information we needed. The IMARC team was very easy to work with and they showed us that it would go the extra mile if we needed anything extra

Read More
KRISHAK BHARTI CO-OP LTD

Last project executed by your team was as per our expectations. We also would like to associate for more assignments this year. Kudos to your team.

Read More
Zee Media Corp. Ltd.

We would be happy to reach out to IMARC again, if we need Market Research/Consulting/Consumer Research or any associated service. Overall experience was good, and the data points were quite helpful.

Read More
Arabian Plastic Manufacturing Company Ltd.

The figures of market study were very close to our assumed figures. The presentation of the study was neat and easy to analyse. The requested details of the study were fulfilled. My overall experience with the IMARC Team was satisfactory.

Read More
Sumitomo Corporation

The overall cost of the services were within our expectations. I was happy to have good communications in a timely manner. It was a great and quick way to have the information I needed.

Read More
Hameln Rds

My questions and concerns were answered in a satisfied way. The costs of the services were within our expectations. My overall experience with the IMARC Team was very good.

Read More
Quality Consultants BV

I agree the report was timely delivered, meeting the key objectives of the engagement. We had some discussion on the contents, adjustments were made fast and accurate. The response time was minimum in each case. Very good. You have a satisfied customer.

Read More
TATA Advanced Systems Limited

We would be happy to reach out to IMARC for more market reports in the future. The response from the account sales manager was very good. I appreciate the timely follow ups and post purchase support from the team. My overall experience with IMARC was good.

Read More
Stax

IMARC was a good solution for the data points that we really needed and couldn't find elsewhere. The team was easy to work, quick to respond, and flexible to our customization requests.

Read More