Compound Semiconductor Market Report by Type (III-V Compound Semiconductor, II-VI Compound Semiconductor, Sapphire, IV-IV Compound Semiconductor, and Others), Product (Power Semiconductor, Transistor, Integrated Circuits, Diodes and Rectifiers, and Others), Deposition Technology (Chemical Vapor Deposition, Molecular Beam Epitaxy, Hydride Vapor Phase Epitaxy, Ammonothermal, Atomic Layer Deposition, and Others), Application (IT and Telecom, Aerospace and Defense, Automotive, Consumer Electronics, Healthcare, Industrial and Energy and Power), and Region 2024-2032

Compound Semiconductor Market Report by Type (III-V Compound Semiconductor, II-VI Compound Semiconductor, Sapphire, IV-IV Compound Semiconductor, and Others), Product (Power Semiconductor, Transistor, Integrated Circuits, Diodes and Rectifiers, and Others), Deposition Technology (Chemical Vapor Deposition, Molecular Beam Epitaxy, Hydride Vapor Phase Epitaxy, Ammonothermal, Atomic Layer Deposition, and Others), Application (IT and Telecom, Aerospace and Defense, Automotive, Consumer Electronics, Healthcare, Industrial and Energy and Power), and Region 2024-2032

Report Format: PDF+Excel | Report ID: SR112024A6188
Buy Now

Market Overview:

The global compound semiconductor market size reached US$ 117.7 Billion in 2023. Looking forward, IMARC Group expects the market to reach US$ 173.6 Billion by 2032, exhibiting a growth rate (CAGR) of 4.3% during 2024-2032. The rising demand for high-speed electronics, 5G communication expansion, power-efficient devices, automotive advancements, LED lighting adoption, and emerging applications, including IoT and renewable energy technologies, are some of the major factors propelling the market.

Report Attribute 
Key Statistics
Base Year
2023
Forecast Years
2024-2032
Historical Years
2018-2023
Market Size in 2023
US$ 117.7 Billion
Market Forecast in 2032
US$ 173.6 Billion
Market Growth Rate 2024-2032 4.3%


A compound semiconductor is a type of semiconductor material composed of two or more elements from different groups in the periodic table. Unlike elemental semiconductors such as silicon or germanium, which consist of a single element, compound semiconductors combine distinct elements to form a crystalline structure with unique electronic properties. These materials offer advantages such as superior electron mobility, wider energy bandgaps, and enhanced performance in specific applications, including high-frequency devices, optoelectronics, and power amplifiers. Some of the common compound semiconductors include gallium arsenide (GaAs), indium phosphide (InP), and gallium nitride (GaN), each tailored for specific functions due to their tunable properties.

Global Compound Semiconductor Market

The escalating demand for high-speed, high-frequency communication systems and the rapid evolution of 5G networks have spurred the need for compound semiconductors, primarily driving the market growth. In line with this, the rising demand for gallium nitride (GaN) and gallium arsenide (GaAs), which offer superior performance in high-power, high-frequency applications is creating a positive outlook for market expansion. Moreover, the growing prominence of energy-efficient solutions has driven the adoption of compound semiconductors in power electronics, bolstering the market growth. In addition to this, the expanding applications of optoelectronics, encompassing light emitting diodes (LEDs), lasers, and photodetectors, are acting as another significant growth-inducing driver. Compound semiconductors, such as indium phosphide (InP), facilitate advancements in data communication, sensing, and imaging technologies, thereby favoring the market growth. Furthermore, the rising acceptance of these materials across various industrial verticals, owing to their unique properties, fostering innovations is contributing to the market’s growth.

Compound Semiconductor Market Trends/Drivers:

High-frequency communication and 5G networks

The surge in demand for high-speed, high-capacity communication systems has been a pivotal driver for compound semiconductors. As the world transitions towards the deployment of 5G networks, these semiconductors are essential due to their ability to operate efficiently at high frequencies, presenting lucrative opportunities for market expansion. Additionally, the shifting preference for compound semiconductors, such as gallium nitride (GaN) and gallium arsenide (GaAs), over traditional elemental semiconductors, including silicon that struggle with high-frequency performance due to their intrinsic properties, is aiding in market expansion. Furthermore, the rising employment of GaN in 5G base stations, radar systems, and satellite communication equipment due to its high electron mobility and robust power handling capabilities is strengthening the market growth.

Power electronics and energy efficiency

The surging emphasis on energy efficiency and the drive towards renewable energy sources has spurred the adoption of compound semiconductors in power electronics, fueling the market growth. Silicon-based semiconductors have limitations in high-temperature and high-voltage applications. However, materials such as silicon carbide (SiC) offer superior thermal conductivity and breakdown voltage, enabling more efficient energy conversion and reduced power losses, which is propelling the market forward. Concurrent with this, the increasing use of SiC in electric vehicles (EVs), solar inverters, and industrial motor drives to minimize energy consumption and enhance sustainability is contributing to the bolstering growth of the compound semiconductor.

Optoelectronics and photonics advancements

The evolution of optoelectronics has been a catalyst for compound semiconductors, including indium phosphide (InP). InP-based devices have exceptional optical properties, making them suitable for applications ranging from high-speed data communication to sensors and imaging technologies, which, in turn, is creating a positive outlook for market expansion. Besides this, InP-based lasers and photodetectors are essential components in optical communication systems, data centers, and emerging technologies such as LiDAR (light detection and ranging), boosting their demand. In addition to this, compound semiconductors play a vital role in the development of LEDs and solid-state lighting solutions, driving energy-efficient lighting options across various sectors.

Compound Semiconductor Industry Segmentation:

IMARC Group provides an analysis of the key trends in each segment of the global compound semiconductor market report, along with forecasts at the global, regional and country levels from 2024-2032. Our report has categorized the market based on type, product, deposition technology and application.

Breakup by Type:

  • III-V Compound Semiconductor
    • Gallium Nitride
    • Gallium Phosphide
    • Gallium Arsenide
    • Indium Phosphide
    • Indium Antimonide
  • II-VI Compound Semiconductor
    • Cadmium Selenide
    • Cadmium Telluride
    • Zinc Selenide
  • Sapphire
  • IV-IV Compound Semiconductor
  • Others
     

III-V compound semiconductor dominates the market

The report has provided a detailed breakup and analysis of the market based on the type. This includes III-V compound semiconductor (gallium nitride, gallium phosphide, gallium arsenide, indium phosphide, and indium antimonide), II-VI compound semiconductor (cadmium selenide, cadmium telluride, and zinc selenide), sapphire, IV-IV compound semiconductor, and others. According to the report, III-V compound semiconductor represented the largest segment.

The demand for III-V compound semiconductors, including gallium nitride (GaN), gallium phosphide, gallium arsenide (GaAs), indium phosphide (InP), and indium antimonide, is propelled by their unique material properties that enable breakthroughs in niche applications. GaN's exceptional power handling capabilities are driving innovations in high-power electronics, RF amplifiers, and 5G infrastructure. GaAs' high electron mobility supports high-speed devices for wireless communication and aerospace applications, thereby impelling the market growth. Moreover, InP's superior optical properties make it vital for high-speed optical \communication systems, while InSb finds use in infrared detectors for thermal imaging. This demand underscores the pivotal role of III-V compound semiconductors in pushing the boundaries of performance in specialized domains.

Breakup by Product:

  • Power Semiconductor
  • Transistor
  • Integrated Circuits
  • Diodes and Rectifiers
  • Others
     

Power semiconductor holds the largest share in the market

A detailed breakup and analysis of the market based on the product has also been provided in the report. This includes power semiconductor, transistor, integrated circuits, diodes and rectifiers, and others. According to the report, power semiconductor accounted for the largest market share.

The surging demand for power compound semiconductors, such as silicon carbide (SiC) and gallium nitride (GaN), due to their transformative impact on energy efficiency and power electronics is one of the main drivers of the market. Additionally, SiC's high thermal conductivity and breakdown voltage enhance energy conversion in electric vehicles, renewable energy systems, and industrial equipment. GaN's high electron mobility enables compact and efficient power supplies, contributing to smaller form factors in consumer electronics and electric vehicle charging systems. As industries seek enhanced performance, reduced energy losses, and greater power density, power compound semiconductors have emerged as crucial enablers, propelling their adoption across a spectrum of applications, aiding in market expansion.

Breakup by Deposition Technology:

  • Chemical Vapor Deposition
  • Molecular Beam Epitaxy
  • Hydride Vapor Phase Epitaxy
  • Ammonothermal
  • Atomic Layer Deposition
  • Others
     

Chemical vapor deposition dominates the market

The report has provided a detailed breakup and analysis of the market based on the deposition technology. This includes chemical vapor deposition, molecular beam epitaxy, hydride vapor phase epitaxy, ammonothermal, atomic layer deposition, and others. According to the report, chemical vapor deposition represented the largest segment.

Chemical vapor deposition (CVD) represents the biggest deposition technology in the compound semiconductor market due to several key factors. CVD offers exceptional uniformity and precision in depositing thin film materials, essential for high-quality compound semiconductors, which, in turn, is driving the market growth. Moreover, it supports a wide range of materials and is compatible with various substrates, making it a highly versatile method. Besides this, CVD's scalability and efficiency in mass production make it an attractive option for manufacturers, fulfilling the demand for compound semiconductors in various applications such as electronics, optoelectronics, and photovoltaics.

Breakup by Application:

  • IT and Telecom
  • Aerospace and Defense
  • Automotive
  • Consumer Electronics
  • Healthcare
  • Industrial and Energy and Power
     

IT and telecom holds the largest share in the market

A detailed breakup and analysis of the market based on the application has also been provided in the report. This includes IT and telecom, aerospace and defense, automotive, consumer electronics, healthcare, and industrial and energy and power. According to the report, IT and telecom accounted for the largest market share.

The utilization of compound semiconductors in the IT and telecom sector is propelled by their capacity to meet the escalating demand for high-speed data transmission, networking, and wireless communication. These materials, such as gallium nitride (GaN) and indium phosphide (InP), enable the creation of high-frequency, high-efficiency devices critical for 5G infrastructure, satellite communication, and broadband expansion, fueling their adoption across various applications across the IT and telecom industry. GaN's superior power handling characteristics enhance the performance of RF amplifiers and base stations, while InP's exceptional optical properties drive advancements in optical communication systems. As the sector continues to seek faster and more reliable connectivity, compound semiconductors play an integral role in enabling the next era of information exchange and digital transformation.

Breakup by Region:

  • North America
    • United States
    • Canada
  • Asia-Pacific
    • China
    • Japan
    • India
    • South Korea
    • Australia
    • Indonesia
    • Others
  • Europe
    • Germany
    • France
    • United Kingdom
    • Italy
    • Spain
    • Russia
    • Others
  • Latin America
    • Brazil
    • Mexico
    • Others
  • Middle East and Africa
     

Asia Pacific exhibits a clear dominance, accounting for the largest compound semiconductor market share.

The report has also provided a comprehensive analysis of all the major regional markets, which include North America (the United States and Canada); Europe (Germany, France, the United Kingdom, Italy, Spain, Russia, and others); Asia Pacific (China, Japan, India, South Korea, Australia, Indonesia, and others); Latin America (Brazil, Mexico, and others); and the Middle East and Africa. According to the report, Asia Pacific accounted for the largest market share.

The Asia Pacific compound semiconductor market is experiencing significant propulsion due to the region's robust manufacturing capabilities, rapid technological advancements, and burgeoning demand for cutting-edge electronics. Countries such as South Korea, Taiwan, China, and Japan have emerged as semiconductor powerhouses, fostering a competitive landscape for compound semiconductor production. In addition to this, the region's focus on consumer electronics, 5G network expansion, and automotive innovations is driving the adoption of compound semiconductors in applications ranging from high-frequency communication devices to power electronics. Additionally, strategic government initiatives and investments in research and development are bolstering the Asia Pacific's position as a key driver in shaping the global compound semiconductor market.

Competitive Landscape:

The competitive landscape of the global compound semiconductor market is marked by a dynamic interplay of established players and emerging contenders, fueled by technological advancements and market demands. Key industry leaders hold substantial market shares, leveraging their expertise in research, development, and manufacturing to offer a diverse range of compound semiconductor solutions. Moreover, collaborations and strategic acquisitions amplify their capabilities, expanding their product portfolios. At the same time, emerging companies are making strides in providing advanced deposition and manufacturing equipment critical for compound semiconductor production. The market's growth is also driven by the convergence of industries such as telecommunications, automotive, and energy, prompting traditional semiconductor giants to enter the domain, intensifying competition.

The report has provided a comprehensive analysis of the competitive landscape in the market. Detailed profiles of all major companies have also been provided. Some of the key players in the market include:

  • Infineon Technologies AG
  • Microchip Technology Inc.
  • Mitsubishi Electric Corporation
  • NXP Semiconductors N.V.
  • Onsemi
  • Qorvo Inc.
  • Renesas Electronics Corporation
  • STMicroelectronics
  • Texas Instruments Incorporated
  • WIN Semiconductors Corp.
  • Wolfspeed Inc.

Recent Developments:

  • In August 2022, Qorvo, Inc confirmed the release of the highest gain 100-watt L-band (1.2-1.4 GHz) compact solution. It is a GaN-on-SiC PAM aimed for commercial and defense radar applications that provides an integrated two-stage amplifier solution with enhanced efficiency. This exceptional performance cuts total system power usage dramatically.
  • In August 2022, Infineon Technologies AG entered into a multi-year supply agreement with II-VI Incorporated for wafers. This acquisition of additional access to this vital semiconductor material aims to meet the substantial increase in customer demand in this industry. Furthermore, the deal complements Infineon Technologies AG's approach to multi-sourcing and enhances the resilience of its supply chain.
  •  In August 2022, Infineon Technologies AG and II-VI Incorporated signed a multi-year supply deal for SiC wafers to fulfill the significant rise in customer demand in this sector.

Compound Semiconductor Market Report Scope:

Report Features Details
Base Year of the Analysis 2023
Historical Period 2018-2023
Forecast Period 2024-2032
Units US$ Billion
Scope of the Report Exploration of Historical and Forecast Trends, Industry Catalysts and Challenges, Segment-Wise Historical and Predictive Market Assessment:
  • Type
  • Product
  • Deposition Technology
  • Application
  • Region
Types Covered
  • III-V Compound Semiconductor: Gallium Nitride, Gallium Phosphide, Gallium Arsenide, Indium Phosphide, Indium Antimonide
  • II-VI Compound Semiconductor: Cadmium Selenide, Cadmium Telluride, Zinc Selenide
  • Sapphire
  • IV-IV Compound Semiconductor
  • Others
Products Covered Power Semiconductor, Transistor, Integrated Circuits, Diodes and Rectifiers, Others
Deposition Technologies Covered Chemical Vapor Deposition, Molecular Beam Epitaxy, Hydride Vapor Phase Epitaxy, Ammonothermal, Atomic Layer Deposition, Others
Applications Covered IT And Telecom, Aerospace and Defense, Automotive, Consumer Electronics, Healthcare, Industrial and Energy, and Power
Regions Covered Asia Pacific, Europe, North America, Latin America, Middle East and Africa
Countries Covered United States, Canada, Germany, France, United Kingdom, Italy, Spain, Russia, China, Japan, India, South Korea, Australia, Indonesia, Brazil, Mexico
Companies Covered Infineon Technologies AG, Microchip Technology Inc., Mitsubishi Electric Corporation, NXP Semiconductors N.V., onsemi, Qorvo Inc., Renesas Electronics Corporation, STMicroelectronics, Texas Instruments Incorporated, WIN Semiconductors Corp., Wolfspeed Inc., etc.
Customization Scope 10% Free Customization
Report Price and Purchase Option Single User License: US$ 3899
Five User License: US$ 4899
Corporate License: US$ 5899
Post-Sale Analyst Support 10-12 Weeks
Delivery Format PDF and Excel through Email (We can also provide the editable version of the report in PPT/Word format on special request)

Key Benefits for Stakeholders:

  • IMARC’s report offers a comprehensive quantitative analysis of various market segments, historical and current market trends, market forecasts, and dynamics of the compound semiconductor market from 2018-2032.
  • The research study provides the latest information on the market drivers, challenges, and opportunities in the global compound semiconductor market.
  • The study maps the leading, as well as the fastest-growing, regional markets. It further enables stakeholders to identify the key country-level markets within each region.
  • Porter's five forces analysis assist stakeholders in assessing the impact of new entrants, competitive rivalry, supplier power, buyer power, and the threat of substitution. It helps stakeholders to analyze the level of competition within the compound semiconductor industry and its attractiveness.
  • Competitive landscape allows stakeholders to understand their competitive environment and provides an insight into the current positions of key players in the market.

Key Questions Answered in This Report

The global compound semiconductor market was valued at US$ 117.7 Billion in 2023.

We expect the global compound semiconductor market to exhibit a CAGR of 4.3% during 2024-2032.

The rising utilization of compound semiconductors in various industries, such as telecommunications, defense, aerospace, etc., owing to their advantageous properties, including high electron mobility and bandgap, enhanced frequency, better current and voltage holding capacity, etc., is primarily driving the global compound semiconductor market.

The sudden outbreak of the COVID-19 pandemic had led to the implementation of stringent lockdown regulations across several nations, resulting in the temporary closure of numerous manufacturing units for compound semiconductors.

Based on the type, the global compound semiconductor market has been divided into III-V compound semiconductor, II-VI compound semiconductor, sapphire, IV-IV compound semiconductor, and others. Among these, III-V compound semiconductor currently exhibits a clear dominance in the market.

Based on the product, the global compound semiconductor market can be categorized into power semiconductor, transistor, integrated circuits, diodes and rectifiers, and others. Currently, power semiconductor accounts for the majority of the global market share.

Based on the deposition technology, the global compound semiconductor market has been segregated into chemical vapor deposition, molecular beam epitaxy, hydride vapor phase epitaxy, ammonothermal, atomic layer deposition, and others, where chemical vapor deposition currently holds the largest market share.

Based on the application, the global compound semiconductor market can be bifurcated into IT and telecom, aerospace and defense, automotive, consumer electronics, healthcare, and industrial and energy and power. Currently, the IT and telecom industry exhibits a clear dominance in the market.

On a regional level, the market has been classified into North America, Asia-Pacific, Europe, Latin America, and Middle East and Africa, where Asia-Pacific currently dominates the global market.

Some of the major players in the global compound semiconductor market include Infineon Technologies AG, Microchip Technology Inc., Mitsubishi Electric Corporation, NXP Semiconductors N.V., onsemi, Qorvo Inc., Renesas Electronics Corporation, STMicroelectronics, Texas Instruments Incorporated, WIN Semiconductors Corp., and Wolfspeed Inc.

Need more help?

  • Speak to our experienced analysts for insights on the current market scenarios.
  • Include additional segments and countries to customize the report as per your requirement.
  • Gain an unparalleled competitive advantage in your domain by understanding how to utilize the report and positively impacting your operations and revenue.
  • For further assistance, please connect with our analysts.
Compound Semiconductor Market Report by Type (III-V Compound Semiconductor, II-VI Compound Semiconductor, Sapphire, IV-IV Compound Semiconductor, and Others), Product (Power Semiconductor, Transistor, Integrated Circuits, Diodes and Rectifiers, and Others), Deposition Technology (Chemical Vapor Deposition, Molecular Beam Epitaxy, Hydride Vapor Phase Epitaxy, Ammonothermal, Atomic Layer Deposition, and Others), Application (IT and Telecom, Aerospace and Defense, Automotive, Consumer Electronics, Healthcare, Industrial and Energy and Power), and Region 2024-2032
Purchase options




Benefits of Customization

Personalize this research

Triangulate with your data

Get data as per your format and definition

Gain a deeper dive into a specific application, geography, customer, or competitor

Any level of personalization

Get in Touch With Us
UNITED STATES

Phone: +1-631-791-1145

INDIA

Phone: +91-120-433-0800

UNITED KINGDOM

Phone: +44-753-713-2163

Email: sales@imarcgroup.com

Client Testimonials

Aktive Services

IMARC made the whole process easy. Everyone I spoke with via email was polite, easy to deal with, kept their promises regarding delivery timelines and were solutions focused. From my first contact, I was grateful for the professionalism shown by the whole IMARC team. I recommend IMARC to all that need timely, affordable information and advice. My experience with IMARC was excellent and I can not fault it.

Read More
Greenfish S.A.

The IMARC team was very reactive and flexible with regard to our requests. A very good overall experience. We are happy with the work that IMARC has provided, very complete and detailed. It has contributed to our business needs and provided the market visibility that we required

Read More
Colruyt Group

We were very happy with the collaboration between IMARC and Colruyt. Not only were your prices competitive, IMARC was also pretty fast in understanding the scope and our needs for this project. Even though it was not an easy task, performing a market research during the COVID-19 pandemic, you were able to get us the necessary information we needed. The IMARC team was very easy to work with and they showed us that it would go the extra mile if we needed anything extra

Read More
KRISHAK BHARTI CO-OP LTD

Last project executed by your team was as per our expectations. We also would like to associate for more assignments this year. Kudos to your team.

Read More
Zee Media Corp. Ltd.

We would be happy to reach out to IMARC again, if we need Market Research/Consulting/Consumer Research or any associated service. Overall experience was good, and the data points were quite helpful.

Read More
Arabian Plastic Manufacturing Company Ltd.

The figures of market study were very close to our assumed figures. The presentation of the study was neat and easy to analyse. The requested details of the study were fulfilled. My overall experience with the IMARC Team was satisfactory.

Read More
Sumitomo Corporation

The overall cost of the services were within our expectations. I was happy to have good communications in a timely manner. It was a great and quick way to have the information I needed.

Read More
Hameln Rds

My questions and concerns were answered in a satisfied way. The costs of the services were within our expectations. My overall experience with the IMARC Team was very good.

Read More
Quality Consultants BV

I agree the report was timely delivered, meeting the key objectives of the engagement. We had some discussion on the contents, adjustments were made fast and accurate. The response time was minimum in each case. Very good. You have a satisfied customer.

Read More
TATA Advanced Systems Limited

We would be happy to reach out to IMARC for more market reports in the future. The response from the account sales manager was very good. I appreciate the timely follow ups and post purchase support from the team. My overall experience with IMARC was good.

Read More
Stax

IMARC was a good solution for the data points that we really needed and couldn't find elsewhere. The team was easy to work, quick to respond, and flexible to our customization requests.

Read More