Photonic Integrated Circuit Market Report by Component (Lasers, MUX/DEMUX, Optical Amplifiers, Modulators, Attenuators, Detectors), Raw Material (Indium Phosphide (InP), Gallium Arsenide (GaAs), Lithium Niobate (LiNbO3), Silicon, Silica-on-Silicon), Integration (Monolithic Integration, Hybrid Integration, Module Integration), Application (Optical Fiber Communication, Optical Fiber Sensor, Biomedical, Quantum Computing), and Region 2024-2032

Photonic Integrated Circuit Market Report by Component (Lasers, MUX/DEMUX, Optical Amplifiers, Modulators, Attenuators, Detectors), Raw Material (Indium Phosphide (InP), Gallium Arsenide (GaAs), Lithium Niobate (LiNbO3), Silicon, Silica-on-Silicon), Integration (Monolithic Integration, Hybrid Integration, Module Integration), Application (Optical Fiber Communication, Optical Fiber Sensor, Biomedical, Quantum Computing), and Region 2024-2032

Report Format: PDF+Excel | Report ID: SR112024A5809
Buy Now

Market Overview:

The global photonic integrated circuit market size reached US$ 11.6 Billion in 2023. Looking forward, IMARC Group expects the market to reach US$ 51.5 Billion by 2032, exhibiting a growth rate (CAGR) of 17.67% during 2024-2032. The expanding cloud computing and data storage industry, the widespread product applications in medical imaging, diagnostics, and optical sensing, the increasing demand for Lidar systems, and the growth of undersea and satellite optical communication networks are some of the factors propelling the market.

Report Attribute
Key Statistics
Base Year
2023
Forecast Years
2024-2032
Historical Years
2018-2023
Market Size in 2023 US$ 11.6 Billion
Market Forecast in 2032 US$ 51.5 Billion
Market Growth Rate (2024-2032)
17.67%


A photonic integrated circuit (PIC) is a groundbreaking technology that harnesses photonics principles to integrate various optical components onto a single chip. Like electronic integrated circuits (ICs), PICs consolidate multiple functions onto a single platform. Still, instead of electrical signals, they manipulate and transmit photons (light) for telecommunications, data communication, and beyond applications. They offer several advantages. They are highly efficient, enabling rapid data transmission at high bandwidths while consuming less power than traditional electronic circuits. Additionally, PICs are inherently immune to electromagnetic interference and can transmit data over longer distances without signal degradation. These features are particularly valuable in emerging technologies like 5G networks, where fast and reliable data transmission is critical. Moreover, PICs play a pivotal role in emerging fields like quantum computing and sensing, where manipulating individual photons is essential. Their compact size and scalability make them increasingly essential in industries aiming for miniaturization and increased performance. As technology advances, they are poised to revolutionize how we process and transmit data, offering solutions to the ever-growing demand for faster, more efficient, and more secure information exchange.

Global Photonic Integrated Circuit Market

The global market is majorly driven by the increasing demand for higher data transmission rates, particularly in telecommunications and data centers. In line with this, the rapid expansion of 5G networks and the looming transition to 6G require the integration of photonics to handle unprecedented data loads and communication speeds, further fueling the adoption of PICs. Furthermore, the emergence of cutting-edge technologies like quantum computing and quantum communication relies heavily on PICs to manipulate and control individual photons, enabling groundbreaking advancements in these fields. Besides, PIC manufacturing techniques' scalability and cost-effectiveness make these devices increasingly accessible to a broader range of industries and applications, from healthcare to automotive. The environmental advantages of photonics, such as reduced energy consumption and heat generation, align with the global push for sustainability, driving the market's growth as industries seek eco-friendly solutions.

Photonic Integrated Circuit Market Trends/Drivers:

Expanding defense sector

The expanding defense sector is offering numerous opportunities for the market. Modern military operations increasingly rely on advanced technology for communication, surveillance, and precision targeting. PICs play a pivotal role in enhancing these capabilities. In the military, secure and high-speed data transmission is crucial. PICs enable optical communication systems that offer greater bandwidth, lower latency, and enhanced security compared to traditional electronic systems. This is vital for transmitting sensitive information and maintaining operational effectiveness. Furthermore, the development of laser-based weaponry and directed energy systems requires precise control of optical signals. PICs enable the manipulation and management of laser beams for applications like target designation and countermeasures against threats. Moreover, the photonic sensors, often based on PICs, enhance situational awareness by providing high-resolution imaging, infrared sensing, and Lidar capabilities. These technologies are essential for surveillance, reconnaissance, and threat detection. Besides, PICs' compact size and integration capabilities are especially valuable in defense applications where space is limited, such as in unmanned aerial vehicles (UAVs) and soldier-worn equipment. As defense agencies worldwide modernize their capabilities, the demand for advanced photonic technologies like PICs continues to grow, making them a critical component of defense systems and a key driver for the market's expansion.

Rapid technological advancements in photonics

Rapid technological advancements in photonics are favorably impacting the market. These advancements continually push the boundaries of what is possible regarding data processing, communication, and sensing using light-based technologies. Photonics has enabled the development of high-speed optical communication systems, essential for the ever-increasing demand for data transmission in applications like 5G, data centers, and long-distance fiber optics. PICs facilitate these high data rates with their ability to integrate various photonic components. Advancements in manufacturing techniques have led to smaller and more efficient PICs. This miniaturization is essential for limited space applications like mobile devices, biomedical devices, and aerospace technology. Furthermore, photonics is a cornerstone of emerging technologies like quantum computing, quantum communication, and LiDAR. PICs are central in manipulating and controlling photons in these cutting-edge fields. Photonics advancements have led to more sensitive and accurate optical sensors in environmental monitoring, healthcare, and security applications. As technological innovations continue to emerge in photonics, the versatility and efficiency of PICs make them a driving force in various industries, positioning the market for sustained growth and further breakthroughs in light-based technologies.

Rapid expansion of data centers

The rapid expansion of data centers is fueling the market growth. In an increasingly digital world, data centers are the backbone of cloud computing, storage, and internet services, demanding high-speed, energy-efficient, and scalable solutions, all enriched by PICs. Data centers require lightning-fast data transmission to handle massive volumes of information. PICs enable high-speed optical communication within and between data centers, reducing latency and improving overall performance. The energy consumption of data centers is a significant concern. PICs consume less power than their electronic counterparts, helping data centers achieve energy efficiency goals and reduce operational costs. As data centers grow to meet escalating data demands, PICs provide a scalable solution. Their compact nature allows for efficient integration into existing data center infrastructures. Photonic interconnects using PICs are essential for connecting servers, switches, and routers within data centers, streamlining data flow, and reducing bottlenecks. With the relentless expansion of digital services and cloud computing, the demand for efficient, high-performance data centers remains unabated. PICs are at the forefront of this transformation, facilitating the growth and optimization of data centers and, consequently, driving the market.

Photonic Integrated Circuit Industry Segmentation:

IMARC Group provides an analysis of the key trends in each segment of the global photonic integrated circuit market report, along with forecasts at the global, regional and country levels for 2024-2032. Our report has categorized the market based on component, raw material, integration, and application.

Breakup by Component:

  • Lasers
  • MUX/DEMUX
  • Optical Amplifiers
  • Modulators
  • Attenuators
  • Detectors
     

Lasers dominates the market

The report has provided a detailed breakup and analysis of the market based on the component. This includes lasers, MUX/DEMUX, optical amplifiers, modulators, attenuators, and detectors. According to the report, lasers represented the largest segment.

Lasers are fundamental components within PICs, and their role is pivotal in various applications across industries. They are integral to optical communication systems, where PICs play a vital role. The demand for high-speed data transmission, especially in 5G networks, data centers, and long-haul fiber optics, drives the need for more efficient and compact lasers within PICs. They are used in various sensing applications, including LiDAR for autonomous vehicles, environmental monitoring, and industrial processes. As these technologies advance, PICs incorporating lasers become increasingly essential for precision and reliability.

Furthermore, lasers play a crucial role in medical applications, such as diagnostics, surgery, and imaging. PICs that integrate lasers offer miniaturized and cost-effective solutions, promoting their adoption in the healthcare sector. They are used for targeting, range finding, and communications in defense and aerospace applications. The development of more compact and efficient laser sources through PICs enhances these capabilities. They are fundamental to quantum computing and quantum communication. PICs with lasers enable the manipulation of photons for quantum information processing.

Breakup by Raw Material:

  • Indium Phosphide (InP)
  • Gallium Arsenide (GaAs)
  • Lithium Niobate (LiNbO3)
  • Silicon
  • Silica-on-Silicon
     

Indium phosphide (InP) dominates the market

The report has provided a detailed breakup and analysis of the market based on the raw material. This includes indium phosphide (InP), gallium arsenide (GaAs), lithium niobate (LiNbO3), silicon, and silica-on-silicon. According to the report, indium phosphide (InP) represented the largest segment.

Indium Phosphide (InP) is a pivotal raw material driving the growth of the photonic integrated circuit (PIC) market. Known for its exceptional optical and electronic properties, InP is a foundation for manufacturing high-performance PICs. Its wide bandgap, high electron mobility, and compatibility with optical and electronic components make it a preferred choice for creating PICs that excel in optical communication, sensing, and computing applications.

InP-based PICs enable faster data transmission, higher bandwidths, and improved energy efficiency, making them crucial for emerging technologies like 5G networks, data centers, LiDAR systems, and quantum computing. As demand for advanced optical solutions continues to rise, the utilization of InP as a raw material underscores its significance in the development of cutting-edge PICs. It contributes substantially to the market's growth and innovation.

Breakup by Integration:

  • Monolithic Integration
  • Hybrid Integration
  • Module Integration
     

Monolithic integration dominates the market

The report has provided a detailed breakup and analysis of the market based on the integration. This includes monolithic integration, hybrid integration, and module integration. According to the report, monolithic integration represented the largest segment.

Monolithic integration is a pivotal category shaping the market. This approach integrates all optical components, such as lasers, waveguides, and detectors, onto a single semiconductor substrate. Monolithic integration offers several key advantages, including compact size, high performance, and cost-effectiveness.

PICs developed through monolithic integration can achieve superior levels of integration and efficiency, making them ideal for applications where space, power, and precision are critical, such as data centers, telecommunications networks, and optical sensing devices. This approach simplifies manufacturing processes, reduces the risk of alignment errors, and enables the creation of highly customized and specialized PICs tailored to specific applications. As the demand for smaller, faster, and more efficient photonic solutions grows, monolithic integration remains a driving force in advancing PIC technology and expanding its presence across various industries.

Breakup by Application:

  • Optical Fiber Communication
  • Optical Fiber Sensor
  • Biomedical
  • Quantum Computing
     

Optical fiber communication dominates the market

The report has provided a detailed breakup and analysis of the market based on the application. This includes optical fiber communication, optical fiber sensor, biomedical, and quantum computing. According to the report, optical fiber communication represented the largest segment.

Optical fiber communication is one of the primary applications propelling the growth of the photonic integrated circuit (PIC) market. PICs find extensive use in optical fiber communication systems, serving as the backbone for high-speed data transmission, internet connectivity, and telecommunication networks. PICs enable more efficient and cost-effective optical communication solutions by integrating optical components like lasers, modulators, detectors, and waveguides onto a single chip. They enhance data rates, reduce power consumption, and facilitate the management of complex optical signals.

With the continuous expansion of data traffic and the need for faster and more reliable communication, the demand for PICs in optical fiber communication remains robust. As technologies like 5G and beyond evolve, PICs are instrumental in meeting the growing demands for high-capacity and low-latency optical communication networks, solidifying their role as a key driver of market growth in this critical application domain.

Breakup by Region:

  • North America
    • United States
    • Canada
  • Asia-Pacific
    • China
    • Japan
    • India
    • South Korea
    • Australia
    • Indonesia
    • Others
  • Europe
    • Germany
    • France
    • United Kingdom
    • Italy
    • Spain
    • Russia
    • Others
  • Latin America
    • Brazil
    • Mexico
    • Others
  • Middle East and Africa
     

North America exhibits a clear dominance, accounting for the largest market share

The market research report has also provided a comprehensive analysis of all the major regional markets, which include North America (the United States and Canada); Asia Pacific (China, Japan, India, South Korea, Australia, Indonesia, and others); Europe (Germany, France, the United Kingdom, Italy, Spain, Russia, and others); Latin America (Brazil, Mexico, and others); and the Middle East and Africa. According to the report, North America accounted for the largest market share.

North America serves as a prominent region driving the market. With its growing technology sector and robust investments in research and development, it is at the forefront of PIC innovation and adoption. The region boasts a strong presence of leading PIC companies, research institutions, and universities focused on advancing photonic technologies. PICs find wide-ranging applications here, particularly in data centers, telecommunications networks, aerospace, and healthcare.

Furthermore, the growing demand for high-speed internet, data analytics, and emerging technologies like 5G and quantum computing fuels the adoption of PICs. Besides, government initiatives and investments in infrastructure development bolster the expansion of optical communication networks, driving the need for more efficient and advanced PIC solutions. As a result, North America plays a pivotal role in shaping the global PIC market and remains a dynamic hub for innovation and market growth in this domain.

Competitive Landscape:

Top companies are strengthening market growth through several strategic initiatives. They invest heavily in research and development, constantly pushing the boundaries of PIC technology. They innovate by developing new materials, manufacturing processes, and design methodologies, leading to improved performance, reduced costs, and expanded applications. Furthermore, these companies offer a wide range of PIC products catering to diverse industries such as telecommunications, data centers, healthcare, and aerospace. This diversification expands the market's reach and addresses various customer needs. Collaboration with industry giants, academic institutions, and research organizations enhances the development and adoption of PIC technology. These partnerships foster innovation and market growth. Moreover, the top companies often have a global presence, with sales and manufacturing operations in key markets. This global footprint facilitates market penetration and ensures timely delivery to customers worldwide. Besides, they actively engage in educational initiatives, helping raise awareness about the benefits and applications of PICs. This outreach contributes to market education and fosters demand. These companies provide customized solutions and consultancy services, tailoring PIC designs to meet specific customer requirements, further expanding their market influence. Additionally, the leading companies adhere to stringent quality standards and certifications, instilling trust in their products' reliability and performance.

The report has provided a comprehensive analysis of the competitive landscape in the photonic integrated circuit market. Detailed profiles of all major companies have also been provided.

  • Broadcom Inc.
  • ColorChip Ltd.
  • Hamamatsu Photonics K.K.
  • II-VI Incorporated
  • Infinera Corporation
  • Intel Corporation
  • LioniX International
  • POET Technologies
  • VLC Photonics S.L. (Hitachi Ltd.).

Recent Developments:

  • In August 2023, Broadcom Inc. announced the availability of the industry's most secure and highest density Gen 7 64G Fibre Channel Director— the 512-port and 256-port Brocade X7 Directors.
  • In August 2023, Hamamatsu Photonics KK introduced TOKUSPEC 1.3.0, an improved software tool version exclusively crafted for its mini-spectrometers.
  • In September 2022, II-VI Incorporated introduced an ultrahigh-resolution telemetry module, or optical channel monitor (UHR-OCM).

Photonic Integrated Circuit Market Report Scope:

Report Features Details
Base Year of the Analysis 2023
Historical Period 2018-2023
Forecast Period 2024-2032
Units US$ Billion
Scope of the Report  Exploration of Historical Trends and Market Outlook, Industry Catalysts and Challenges, Segment-Wise Historical and Predictive Market Assessment:
  • Component
  • Raw Material
  • Integration
  • Application
  • Region
Components Covered Lasers, MUX/DEMUX, Optical Amplifiers, Modulators, Attenuators, Detectors
Raw Materials Covered Indium Phosphide (InP), Gallium Arsenide (GaAs), Lithium Niobate (LiNbO3), Silicon, Silica-on-Silicon
Integrations Covered Monolithic Integration, Hybrid Integration, Module Integration
Applications Covered Optical Fiber Communication, Optical Fiber Sensor, Biomedical, Quantum Computing
Regions Covered Asia Pacific, Europe, North America, Latin America, Middle East and Africa
Countries Covered United States, Canada, Germany, France, United Kingdom, Italy, Spain, Russia, China, Japan, India, South Korea, Australia, Indonesia, Brazil, Mexico
Companies Covered Broadcom Inc., ColorChip Ltd., Hamamatsu Photonics K.K., II-VI Incorporated, Infinera Corporation, Intel Corporation, LioniX International, POET Technologies, VLC Photonics S.L. (Hitachi Ltd.)., etc.
Customization Scope 10% Free Customization
Report Price and Purchase Option Single User License: US$ 3899
Five User License: US$ 4899
Corporate License: US$ 5899
Post-Sale Analyst Support 10-12 Weeks
Delivery Format PDF and Excel through Email (We can also provide the editable version of the report in PPT/Word format on special request)

Key Benefits for Stakeholders:

  • IMARC’s industry report offers a comprehensive quantitative analysis of various market segments, historical and current market trends, market forecasts, and dynamics of the photonic integrated circuit market from 2018-2032.
  • The research report provides the latest information on the market drivers, challenges, and opportunities in the global photonic integrated circuit market.
  • The study maps the leading, as well as the fastest-growing, regional markets. It further enables stakeholders to identify the key country-level markets within each region.
  • Porter's five forces analysis assists stakeholders in assessing the impact of new entrants, competitive rivalry, supplier power, buyer power, and the threat of substitution. It helps stakeholders to analyze the level of competition within the photonic integrated circuit industry and its attractiveness.
  • Competitive landscape allows stakeholders to understand their competitive environment and provides an insight into the current positions of key players in the market.

Key Questions Answered in This Report

The global photonic integrated circuit market was valued at US$ 11.6 Billion in 2023.

We expect the global photonic integrated circuit market to exhibit a CAGR of 17.67% during 2024-2032.

The rising demand for photonic integrated circuits across various industries, such as defense, aerospace, automotive, etc., as they offer higher speed, enhanced performance and power efficiency, better miniaturization, lower thermal effects, etc., is primarily driving the global photonic integrated circuit market.

The sudden outbreak of the COVID-19 pandemic had led to the implementation of stringent lockdown regulations across several nations, resulting in the temporary closure of numerous manufacturing units for photonic integrated circuits.

Based on the component, the global photonic integrated circuit market has been segmented into lasers, MUX/DEMUX, optical amplifiers, modulators, attenuators, and detectors. Currently, lasers hold the largest market share.

Based on the raw material, the global photonic integrated circuit market can be divided into Indium Phosphide (InP), Gallium Arsenide (GaAs), Lithium Niobate (LiNbO3), silicon, and silica-on-silicon. Among these, Indium Phosphide (InP) currently exhibits a clear dominance in the market.

Based on the integration, the global photonic integrated circuit market has been categorized into monolithic integration, hybrid integration, and module integration, where monolithic integration accounts for the majority of the global market share.

Based on the application, the global photonic integrated circuit market can be segregated into optical fiber communication, optical fiber sensor, biomedical, and quantum computing. Currently, optical fiber communication holds the largest market share.

On a regional level, the market has been classified into North America, Asia-Pacific, Europe, Latin America, and Middle East and Africa, where North America currently dominates the global market.

Some of the major players in the global photonic integrated circuit market include Broadcom Inc., ColorChip Ltd., Hamamatsu Photonics K.K., II-VI Incorporated, Infinera Corporation, Intel Corporation, LioniX International, POET Technologies, and VLC Photonics S.L. (Hitachi Ltd.).

Need more help?

  • Speak to our experienced analysts for insights on the current market scenarios.
  • Include additional segments and countries to customize the report as per your requirement.
  • Gain an unparalleled competitive advantage in your domain by understanding how to utilize the report and positively impacting your operations and revenue.
  • For further assistance, please connect with our analysts.
Photonic Integrated Circuit Market Report by Component (Lasers, MUX/DEMUX, Optical Amplifiers, Modulators, Attenuators, Detectors), Raw Material (Indium Phosphide (InP), Gallium Arsenide (GaAs), Lithium Niobate (LiNbO3), Silicon, Silica-on-Silicon), Integration (Monolithic Integration, Hybrid Integration, Module Integration), Application (Optical Fiber Communication, Optical Fiber Sensor, Biomedical, Quantum Computing), and Region 2024-2032
Purchase options




Benefits of Customization

Personalize this research

Triangulate with your data

Get data as per your format and definition

Gain a deeper dive into a specific application, geography, customer, or competitor

Any level of personalization

Get in Touch With Us
UNITED STATES

Phone: +1-631-791-1145

INDIA

Phone: +91-120-433-0800

UNITED KINGDOM

Phone: +44-753-713-2163

Email: sales@imarcgroup.com

Client Testimonials

Aktive Services

IMARC made the whole process easy. Everyone I spoke with via email was polite, easy to deal with, kept their promises regarding delivery timelines and were solutions focused. From my first contact, I was grateful for the professionalism shown by the whole IMARC team. I recommend IMARC to all that need timely, affordable information and advice. My experience with IMARC was excellent and I can not fault it.

Read More
Greenfish S.A.

The IMARC team was very reactive and flexible with regard to our requests. A very good overall experience. We are happy with the work that IMARC has provided, very complete and detailed. It has contributed to our business needs and provided the market visibility that we required

Read More
Colruyt Group

We were very happy with the collaboration between IMARC and Colruyt. Not only were your prices competitive, IMARC was also pretty fast in understanding the scope and our needs for this project. Even though it was not an easy task, performing a market research during the COVID-19 pandemic, you were able to get us the necessary information we needed. The IMARC team was very easy to work with and they showed us that it would go the extra mile if we needed anything extra

Read More
KRISHAK BHARTI CO-OP LTD

Last project executed by your team was as per our expectations. We also would like to associate for more assignments this year. Kudos to your team.

Read More
Zee Media Corp. Ltd.

We would be happy to reach out to IMARC again, if we need Market Research/Consulting/Consumer Research or any associated service. Overall experience was good, and the data points were quite helpful.

Read More
Arabian Plastic Manufacturing Company Ltd.

The figures of market study were very close to our assumed figures. The presentation of the study was neat and easy to analyse. The requested details of the study were fulfilled. My overall experience with the IMARC Team was satisfactory.

Read More
Sumitomo Corporation

The overall cost of the services were within our expectations. I was happy to have good communications in a timely manner. It was a great and quick way to have the information I needed.

Read More
Hameln Rds

My questions and concerns were answered in a satisfied way. The costs of the services were within our expectations. My overall experience with the IMARC Team was very good.

Read More
Quality Consultants BV

I agree the report was timely delivered, meeting the key objectives of the engagement. We had some discussion on the contents, adjustments were made fast and accurate. The response time was minimum in each case. Very good. You have a satisfied customer.

Read More
TATA Advanced Systems Limited

We would be happy to reach out to IMARC for more market reports in the future. The response from the account sales manager was very good. I appreciate the timely follow ups and post purchase support from the team. My overall experience with IMARC was good.

Read More
Stax

IMARC was a good solution for the data points that we really needed and couldn't find elsewhere. The team was easy to work, quick to respond, and flexible to our customization requests.

Read More