Economic Feasibility Study for Electrolytic Manganese Dioxide Manufacturing Plant: A Detailed Study

insight-image


Electrolytic manganese dioxide (EMD) is made by dissolving manganese dioxide in sulfuric acid and placing between two electrodes. Manganese dioxide, also referred to as Manganese (IV) oxide, is an inorganic compound that is commonly found in blackish or brown solid and is insoluble in water. EMD is a highly refined form of MnO2 designed to meet the specific electrical requirements of battery manufacturers. According to an IMARC study, the global electrolytic manganese dioxide market was valued at US$ 1,126.6 Million in 2024, growing at a CAGR of 8.7% from 2019 to 2024. Looking ahead, the market is expected to grow at a CAGR of approximately 8.5% from 2025 to 2033, reaching a projected value of US$ 2,351.6 Million by 2033. The growing population around the world coupled with improvement in living standards, and rising demand for power are some key factors creating positive outlook for the global EMD market. EMD is being frequently utilized in energy storage technologies. It is getting more challenging to balance the existing energy supply with the energy demand because many alternatives, such as clean and renewable energy sources, are unstable. Due to the requirement for storage to enable the usage of energy when needed, there is an increase in the demand for energy storage batteries, which in turn is driving the demand for EMD. Furthermore, lithium, sodium, and magnesium-ion rechargeable batteries frequently include EMD. In recent years, the demand for EMD has significantly increased, driven by its widespread use in zinc-carbon and lithium-ion batteries.

Trending Insights on Electrolytic Manganese Dioxide: Latest News and Developments

  • In July 2024, Maxell Ltd., a company involved in battery and consumer electronics, has announced the release of its cutting-edge Cylindrical Type Lithium Manganese Dioxide Batteries (CR). These innovative batteries, which offer remarkable performance and durability, are poised to transform power supplies for smart meters, Internet of Things devices, and a variety of industrial applications.
  • In June 2024, an updated pricing structure for different grades of manganese ore was announced, taking effect on July 1, 2024, according to Manganese Ore India Limited (MOIL), the India’s top manganese ore producer. This action reflects MOIL's approach to changing market conditions.
  • In January 2024, the Customs and Tariff Committee's Trade Remedy Subcommittee, the Council on Customs, Tariff, Foreign Exchange and Other Transactions, informed the Finance Ministry of Japan that it was appropriate to prolong the taxable period of anti-dumping taxes on electrolytic manganese in China, as per the study conducted by them.

Case Study on Cost Model of Electrolytic Manganese Dioxide Manufacturing Plant

Objective: One of our clients has approached us to conduct a feasibility study for establishing a mid to large-scale electrolytic manganese dioxide manufacturing plant in Zambia. We have developed a detailed financial model for the plant's setup and operations. The proposed facility is designed with an annual production capacity of 10,000 tons of electrolytic manganese dioxide and will cover a land area of 6,500 square meters.

Manufacturing Process: Electrolytic manganese dioxide, or EMD, is made in a number of steps to create a high-purity product for industrial and battery uses. Initially, manganese ore is reduced in a furnace or kiln to transform higher manganese oxides into soluble forms. Manganese is extracted from the reduced ore by leaching, a process in which it combines with acid to form a soluble manganese sulphate solution. After that, a purification procedure is used to eliminate contaminants like iron, aluminium, and other metals from the solution, guaranteeing a clean electrodeposition feedstock. An electrodeposition cell is used to apply an electric current to the purified manganese solution. Electrochemical reactions deposit manganese dioxide as a high-purity solid onto the anode. Following electrodeposition, any remaining acidic solution is neutralised to protect the environment and recover any recyclable materials. After carefully removing the accumulated manganese dioxide, the area is dried to remove any remaining moisture and get the required consistency. Lastly, the EMD is packaged in controlled settings to guarantee product safety and quality throughout transit and storage. High purity and efficiency are guaranteed by this painstakingly planned procedure, which meets the exacting specifications of devices like batteries and electronics.

Manufacturing Process

Mass Balance and Raw Material Required: The primary raw materials utilized in the electrolytic manganese dioxide manufacturing plant include soil conditioner, soda ash, coke, MnO2 concentrate, sulphuric acid, limestone, and barium sulphide. Around 1.75 Tons of manganese MnO2 concentrate, 0.10 tons of coke, 1.00 tons of sulphuric acid (98%), 0.05 tons of limestone, 0.0003 tons of barium sulphide and 0.0006 tons of soda ash are required to make 1 Ton of electrolytic manganese dioxide.

Techno-Commercial Parameter:

  • Capital Investment (CapEx): The total capital cost for establishing the proposed electrolytic manganese dioxide manufacturing plant is approximately US$ 14.97 Million. Machinery cost account for 80.5% of the total capital cost, while civil works cost are estimated at around US$ 1.75 Million. The land and site development cost for an electrolytic manganese dioxide manufacturing plant constitutes a significant portion of the total capital cost, including the land registration charges, developmental charges of building walls, steel gates, and other development charges. This ensures a robust foundation for safe and efficient plant operations.
  • Operating Expenditure (OpEx): In an electrolytic manganese dioxide manufacturing plant, the operating cost for the first year of operations is projected at US$ 7.02 Million. This estimate includes the cost of raw materials, utilities, depreciation, taxes, packing cost, transportation cost, and repairs and maintenance. By the seventh year of operations, the total operational cost is expected to increase by 52.2% compared to the first year, driven by inflation, market fluctuations, and potential rises in the cost of key materials. Disruptions to the supply chain, rising consumer demand, and shifts in the state of the world economy are some of the factors causing this growth.

Techno-Commercial Parameter

  • Profitability Analysis Year on Year Basis: The proposed electrolytic manganese dioxide plant, with a capacity of 10,000 tons per annum, achieved an impressive revenue of US$ 13.20 Million in its first year. We assisted our client in developing a detailed cost model, which projects steady growth, with revenue reaching US$ 19.80 Million by Year 7. Gross profit margins change from 46.8% to 46.0%, and net profit margins rise from 15.8% to 30.0%, highlighting strong financial viability and operational efficiency.

Profitability Analysis Year on Year Basis

Conclusion

Our financial model for the electrolytic manganese dioxide manufacturing plant was meticulously designed to meet the client’s objectives. It offered a comprehensive examination of production costs, covering capital expenditures, manufacturing procedures, raw materials, and operating costs. The model, which is specifically designed to meet the need of manufacturing 10,000 tons of electrolytic manganese dioxide per year, anticipates profitability while taking market trends, inflation, and any changes in raw material prices into account. This thorough financial model shows our dedication to providing accurate, customer-focused solutions that guarantee the long-term success of major industrial projects by providing the client with insightful information for strategic decision-making.

IMARC's Financial Model Expertise: Helping Our Clients Explore Industry Economics

IMARC is a global market research company that offers a wide range of services, including market entry and expansion, market entry and opportunity assessment, competitive intelligence and benchmarking, procurement research, pricing and cost research, regulatory approvals and licensing, factory setup, factory auditing, company incorporation, incubation services, recruitment services, marketing and sales.

Brief List of Our Services: Market Entry and Expansion

  • Market Entry and Opportunity Assessment
  • Competitive Intelligence and Benchmarking
  • Procurement Research
  • Pricing and Cost Research
  • Sourcing
  • Distribution Partner Identification
  • Contract Manufacturer Identification
  • Regulatory Approvals, and Licensing
  • Factory Setup
  • Factory Auditing
  • Company Incorporation
  • Incubation Services
  • Recruitment Services
  • Marketing and Sales

Under our factory setup services, we assist our clients in exploring the feasibility of their plants by providing comprehensive financial modeling. Additionally, we offer end-to-end consultation for setting up a plant in India or abroad. Our financial modeling includes an analysis of capital expenditure (CapEx) required to establish the manufacturing facility, covering costs such as land acquisition, building infrastructure, purchasing high-tech production equipment, and installation. Furthermore, the layout and design of the factory significantly influence operational efficiency, energy consumption, and labor productivity, all of which impact long-term operational expenditure (OpEx). So, every parameter is covered in the analysis.

At IMARC, we leverage our comprehensive market research expertise to support companies in every aspect of their business journey, from market entry and expansion to operational efficiency and innovation. By integrating our factory setup services with our deep knowledge of industry dynamics, we empower our clients to not only establish manufacturing facilities but also strategically position themselves in highly competitive markets. Our financial modeling and end-to-end consultation services ensure that clients can explore the feasibility of their plant setups while also gaining insights into competitors' strategies, technological advancements, and regulatory landscapes. This holistic approach enables our clients to make informed decisions, optimize their operations, and align with sustainable practices, ultimately driving long-term success and growth.

Request a Callback
factory-image
factory-image

Factory Setup Services

IMARC Group's factory setup services streamline the entire establishment process, ensuring efficient planning, seamless execution, and optimal operational readiness for your manufacturing facility.

factory-image
factory-image

Site Selection Services

IMARC Group's site selection services optimize location choices for businesses, ensuring strategic, cost-effective, and efficient manufacturing operations.

factory-image
factory-image

Engineering and Design Services

IMARC Group's factory engineering and design services deliver efficient and customized solutions to enhance operational performance and optimize production processes.

factory-image
factory-image

Factory Audit Services

IMARC Group's plant audit services offer comprehensive evaluations of your industrial facility's health, efficiency, and regulatory compliance.

factory-image
factory-image

Regulatory Approvals, and Licensing Services

IMARC Group's regulatory approval and licensing services ensure businesses meet all compliance requirements, facilitating smooth and timely market entry.

factory-image
factory-image

Partner Identification

IMARC Group's partner identification services help businesses find the ideal distributor, machinery supplier, raw material provider, or contract manufacturer, enhancing operational efficiency and growth.

Client Testimonials

Our Clients

}
Rmd
Samudera
Amerisource
Skycell
Fedex
Alicorp
Maersk
DHL
Microsoft
United Parcel service

Contact Us

Have a question or need assistance? Please complete the form with your inquiry or reach out by emailing us on sales@imarcgroup.com.

Previous post

Cost Breakdown and Analysis of Electrolytic Manganese Metal Manufacturing Plant: A Deep-Dive into Manganese Extraction
Cost Breakdown and Analysis of Electrolytic Manganese Metal Manufacturing Plant: A Deep-Dive into Manganese Extraction

Electrolytic manganese metal is a pure form of the metallic element manganese, Mn concentration ranges from 99.7% to 99.9%. It is termed "electrolytic" because the refining process involves electrolysis. In other words, a chemical reaction powered by an electric current. Heating the ore and applying chemical processes to remove most impurities is the first steps in the processing of manganese.

Exploring the Fascinating Profit Potential of Ethanol Manufacturing Plant: A Detailed Cost Model Study
Exploring the Fascinating Profit Potential of Ethanol Manufacturing Plant: A Detailed Cost Model Study

Ethanol is a renewable biofuel produced primarily from crops such as corn, sugarcane, and biomass. It is often added to fuel to lower carbon emissions and improve energy security. Additionally, ethanol is used in the beverage, chemical, and pharmaceutical sectors. Ethanol is becoming more popular as a cleaner substitute for fossil fuels due to the rising need for sustainable energy solutions, which is propelling improvements in biofuel technology and production efficiency.

Cost Projection and Analysis for Unsaturated Polyester Resin Production: An Elaborate Cost Analysis
Cost Projection and Analysis for Unsaturated Polyester Resin Production: An Elaborate Cost Analysis

Widely recognized for its superior mechanical, chemical, and thermal properties, unsaturated polyester resin (UPR) is a highly versatile thermosetting polymer utilized across multiple industries. UPR is created when unsaturated acids and glycols react mostly used in composites, coatings, and adhesives.

Economic Insights into Sodium Cyanide Manufacturing: A Cost Model Approach
Economic Insights into Sodium Cyanide Manufacturing: A Cost Model Approach

Sodium cyanide (NaCN) is a highly toxic, colorless crystalline compound with a faint almond-like odor. It is a water-soluble salt composed of sodium (Na+) and cyanide (CN-) ions, known for its versatile applications across various industrial sectors. Despite its hazardous nature, sodium cyanide is extensively used due to its unique properties and efficacy in specific processes.

Optimizing Caustic Soda Production: A Comprehensive Cost Analysis
Optimizing Caustic Soda Production: A Comprehensive Cost Analysis

Caustic soda is the common term for sodium hydroxide (NaOH), a versatile alkali widely used in industries such as chemicals, textiles, pulp and paper, detergents, and water treatment. Sodium hydroxide is known to have strong alkaline properties. It is employed in manufacturing processes such as saponification, pH regulation, and chemical synthesis, making it essential for diversified industrial applications.

Optimizing Citric Acid Production: A Comprehensive Cost Analysis
Optimizing Citric Acid Production: A Comprehensive Cost Analysis

Citric acid is a naturally occurring weak organic acid found in citrus fruits, widely used for its sour taste, preservative properties, and acidity regulation. Industrially, it is produced through the fermentation of sugars and is a key ingredient in the food and beverage industry, where it enhances flavor and preserves freshness. Additionally, it has applications in pharmaceuticals, cosmetics, and cleaning products due to its ability to stabilize ingredients and chelate metals.

Optimizing Calcium Stearate Production: A Comprehensive Cost Analysis
Optimizing Calcium Stearate Production: A Comprehensive Cost Analysis

Calcium stearate, a key chemical compound, holds significant importance across various industries due to its multifunctional properties. Comprising calcium and stearic acid, it serves as a versatile additive and processing aid. As a widely utilized stabilizer and lubricant in the manufacturing of plastics, rubber, and pharmaceuticals, calcium stearate plays a pivotal role in enhancing material properties and processing efficiency.

Optimizing Calcium Hypochlorite Production: A Comprehensive Cost Analysis
Optimizing Calcium Hypochlorite Production: A Comprehensive Cost Analysis

Calcium hypochlorite is a powerful chemical compound, widely used in many different applications and industries. This white solid, made up of calcium, oxygen, and chlorine, contains excellent chlorine content with a strong oxidation capability. Being an oxidizing agent that gives out chlorine when dissolved in water, it is in huge demand for the treatment, sanitation, and disinfection of water.

Optimizing Nitrocellulose Production: A Comprehensive Cost Analysis
Optimizing Nitrocellulose Production: A Comprehensive Cost Analysis

Nitrocellulose, also known as cellulose nitrate or guncotton, is a chemically modified form of cellulose known for its exceptional film-forming capabilities, strong adhesion, and biodegradability. It is widely used in applications such as wood coatings, printing inks, leather finishes, automotive paints, nail varnishes, and more.

Understanding the Economics: A Copper Wire Manufacturing Case Study
Understanding the Economics: A Copper Wire Manufacturing Case Study

The growth of the copper wire market is primarily driven by increased electricity demand, heightened investments in construction, expansion of electrical infrastructure, the rise of renewable energy, a shift toward electric vehicles in the automotive industry, and the growing adoption of electric appliances. The development of smart grids and investments in upgrading power transmission systems further boost global copper wire demand. Additionally, the telecom industry's use of copper in optic fiber cables and infrastructure development in emerging markets, especially in Asia Pacific and Latin America, are expected to sustain high demand for copper wire in the coming years.

Big Plans for Urea: Mexico Targets Tripling Fertilizer Production for 2024
Big Plans for Urea: Mexico Targets Tripling Fertilizer Production for 2024

Urea is employed in a wide range of applications, such as nitrogenous fertilizers, stabilizing agents, keratolytic agents, and resins, among others. Key industries that utilize urea include agriculture, chemicals, automotive, and medical sectors. According to recent findings by IMARC Group, the global urea market reached a value of US$ 51.9 Billion in 2023. Looking ahead, the market is projected to grow to US$ 59.9 Billion by 2032, with a compound annual growth rate (CAGR) of 1.6% during 2024-2032. Several factors are driving this growth, including the increasing demand for nitrogen-based fertilizers in India, ongoing advancements in urea production technology, the rising need for higher crop yields to meet growing food demand, and favorable government policies.

India’s Race to Lead the Lithium-Ion Battery Industry: Exploring Costs and Opportunities
India’s Race to Lead the Lithium-Ion Battery Industry: Exploring Costs and Opportunities

Lithium-ion batteries are rechargeable power sources widely used in devices such as cell phones, laptops, and electric vehicles. These batteries store energy by transferring lithium ions between the anode and cathode electrodes, with the electrolyte facilitating this movement and generating free electrons at the anode. Key types of lithium-ion batteries include those with lithium cobalt oxide, lithium iron phosphate, lithium nickel manganese cobalt, and lithium manganese oxide. Lithium-ion batteries come in a range of capacities from 0 mAh to 6000 mAh. They offer several advantages, including a high energy-to-weight ratio, excellent charge retention, and generally longer lifespans with more charge/discharge cycles compared to other rechargeable batteries.

From Forests to Fortune: R$105.4B Investment to Boost Brazil’s Cellulose Industry
From Forests to Fortune: R$105.4B Investment to Boost Brazil’s Cellulose Industry

Brazil is renowned across the world for its enormous rainforests and agricultural resources. Over the recent years, the country has emerged as a major player in the global cellulose industry. As per IMARC estimates, the cellulose fiber market in Brazil was valued at US$ 740.4 Million in 2023. By 2032, the market is projected to reach US$ 1,379.9 Million, growing at a CAGR of 7.0% from 2024 till 2032. Strategic investments in the industry, along with favorable environmental conditions, are guiding a cellulose revolution in Brazil, which is likely to have profound implications for both regional and international markets.

Green Chemistry: The Future of the Chemical Industry
Green Chemistry: The Future of the Chemical Industry

Green chemistry refers to the practice of creating new chemicals, materials, and processes that are less toxic to human health and the environment. It comprises the utilization of renewable resources and reducing waste and energy consumption. Green chemicals are used in various applications such as industrial and chemical, food and beverages, automotive, packaging, construction, agriculture, personal care, and many others. Nowadays, different types of green chemicals are available in the market, including bio-alcohol (bioethanol, bio-butanol, bio-methanol, and many others), bio-organic acids (bio-lactic acid, bio-acetic acid, bio-citric acid, bio-adipic acid, bio-acrylic acid, bio-succinic acid, and others), biopolymers (poly-lactic acid, bio-polyethylene, and others), bio-ketones, bio-solvents, and many other organic acids.

Vanadium's New Frontier: Gujarat's Seabed Discovery Promises Industry Transformation
Vanadium's New Frontier: Gujarat's Seabed Discovery Promises Industry Transformation

Vanadium has been discovered in sediment samples collected from the Gulf of Khambhat, which opens into the Arabian Sea off Alang in Gujarat. This discovery is expected to enhance the production of steel and titanium in India and boost redox battery manufacturing. Vanadium is one of the most abundant transition metals and is typically found in various minerals, including vanadinite, patronite, and carnotite. It is a hard, ductile, and rare grey metal, often extracted as a byproduct while processing other metals such as iron and uranium.

Global Steel Map: A Comprehensive Overview of Regional Trends and Expectations in 2024
Global Steel Map: A Comprehensive Overview of Regional Trends and Expectations in 2024

Steel is a versatile and widely used alloy composed primarily of iron and carbon, with small amounts of other elements such as manganese, chromium, nickel, and others. It is a widely utilized material in construction, manufacturing, and various industries. Steel exhibits a range of desirable properties, including high tensile strength, durability, hardness, corrosion resistance, heat resistance, and the ability to be formed into different shapes. Carbon steel, alloy steel, stainless steel, and tool steel are the main types of steel. Steel is utilized in the manufacturing of various products, including ingots, semi-finished materials, hot-rolled sheets and coils, galvanized sheets, steel tubes and fittings, plates, wire rods, and many others. Its applications span various industries such as building and construction, electrical appliances, metal products, automotive, transportation, and mechanical equipment. The top five exporters of steel are China, Japan, South Korea, and Germany. Similarly, the major importers of steel include the United States, Germany, Italy, and Turkey.

Africa's Copper Giant: Zambia Targets 1 Million Tons of Copper by 2026
Africa's Copper Giant: Zambia Targets 1 Million Tons of Copper by 2026

Copper is an essential material in electrical wiring, electronics, and heating systems. It is also highly ductile and malleable, allowing it to be easily shaped and drawn into thin wires. Additionally, copper possesses antimicrobial properties, making it useful in medical and architectural applications. Its resistance to corrosion and its ability to form alloys with other metals further enhance its versatility across various industries.